Projects


Gopro Hero Max 360 Camera

To test out some of the capabilities of the Gopro Hero Max 360 camera one of the lab managers at Innovate Labs took the camera out on a little adventure. Utilizing the 360 video from the camera gives the user the ability to alter the perspective and angle in post processing, allowing a lot of flexibility in the footage retrieved and final product.


3D Printed Playdoh Remover Prototype

Liam is a 5th grader attending Mansfield Middle School. He was one of the winners in the Connecticut Invention Convention and will move on to Nationals. His prototype is made of metal and rusts if Playdoh is not cleaned off for an extended period of time, a common scenario for 3-years old's playing with Playdoh. Also, the metal can be sharp for little kids to use. He wanted to 3-D print his prototype to see if it would help these issues and it does! Thanks to the OPIM Innovate lab, Liam was able to create a more sustainable and safer prototype for children to test out. Seeing as Liam and his parents have no experience with 3-D printing, this could not have happened without you!


3D Printed Marceline’s Bass Ax from Adventure Time

With the resources provided to me through the OPIM Innovate Lab, I created two versions of the bass guitar used by the character Marceline in the show Adventure Time. Innovate provided me with skills related to 3d printing, slicing, modeling, and building which all helped me to create props that were very show authentic. Additionally, the tech tracks offered to me through the Innovate Lab were transferable to other softwares such as SolidWorks and Creality5.0. Their multiple 3d printers also helped me get the parts necessary for this project fast and efficiently, which was a huge help. Overall, the Innovate Lab has helped me learn a great deal about 3d modeling and helped me build extremely intricate props.


Learn About Octoprint Installation at the OPIM Innovate Lab

What started out as a simple way to monitor our 3D prints turned into a full blown remote control system for our Prusa i3 MK3s! This setup produces stunning timelapses that make the print look like it is rising from the print bed on its own.

So how does it work? One of our lab assistants, Jason Tyler, who spearheaded the project, explains, “It all starts with the Raspberry Pi, which is a mini computer that serves as the brains of the system. This computer is connected to both the printer and the camera that we have watching the prints. It runs a special operating system that connects to our network and has a bunch of special features that makes this project possible.”

In essence, after each layer printed the software talks to the printer and tells it to move the extruder (the big printer head that does the ‘printing’) out of the way, then tells the camera to take a picture. This is done using the GCode language, which is the universal programming language of most 3D printers. When compiled at the end, the pictures are stitched together into a seamless video.

Videos aren’t the only thing that Octoprint can do, Jason says. “The Octopi software allows us to start new prints, monitor current print status, and view prints layer by layer from anywhere!. There is a plugin store where the community has uploaded a bunch of add ons for Octoprint that give this project an extensive amount of possibilities.”

Having a system like this fits in perfectly at OPIM Innovate: It provides a glimpse into some real world skills and projects students might not encounter elsewhere. Octoprint essentially acts as a load/supply management system that increases operational efficiency; similar to examples in the manufacturing industry. Students can view real-time analytics and optimize their print settings from the cloud!

If you are following us on Tiktok or Instagram you may have seen some of these videos before. Come by the lab from 9-4 Monday to Friday to see Octoprint in action!


Reinvent PT

The REINVENT-PT (REhabilitation INnoVations & Emerging Novel Technologies in Physical Therapy) lab (PI: Srinivasan) is interested in understanding developmental trajectories of individuals with neuro-developmental disabilities such as Autism, Cerebral Palsy, Down syndrome, and Intellectual Disability across the lifespan.

The study we are currently working on explores the feasibility and efficacy of a home-based training program that uses joystick-operated ride-on-toys to improve arm function in children with cerebral palsy. In this study, we have lots of fun activities that involve children driving the ride-on-toys to complete playful challenges based on themes such as sports, children’s animated movies, favorite holidays, and other exciting themes.

The contribution of OPIM Innovate has been instrumental in supporting the activities of the children, by means of creating, modeling, and printing 3-D printed toys. These toys will significantly aid in motivating the children to participate, providing them with novel textures and shapes to interact with, and facilitating hand movements that are crucial to the study. OPIM Innovate has demonstrated its generosity by creating a diverse range of 3-D printed toys, including fidget, moveable, puzzle, and interactive toys, all of which are thematically aligned with popular children's characters such as Minions, Mickey Mouse, Scooby Doo and many more. OPIM Innovate's valuable contribution to the study will enable us to provide a more engaging and effective learning experience for the children. We extend our sincerest gratitude and appreciation to OPIM Innovate for their support and generosity. We hope to continue working with you all in the future. Thank you again!

reinventpt 3D printed toys

AIAA Rocketry: Propulsive Landing Project

For this project, our goal is to successfully drop and land a model rocket on a landing pad using propulsion along with various guidance systems. The OPIM Innovate lab provided super helpful insight regarding 3D printing practices such modifying prototype parts and 3D tech specificities. They also put an emphasis on on getting our prints to us as soon as possible. 

Submitted by Patrick Iannetta, Mechanical Engineering, Rocketry Team

Rocket Engineering Team

Pinewood Derby Race Car

The competition was held on April 21st the P.J Werth Tower. Any team that incorporates an Arduino component onto their derby car can get a bonus on their design score for the project. I have an Arduino code that prints ‘Go Derby 2023 :D’ on a LCD screen that connects to the Arduino board. I borrowed the Arduino board from the OPIM Innovate lab to help me complete the project. This project was for the UNIV 1810 class.
Submitted by: Anny Zheng, Computer Science
              

Fish Tank Livewell

3D Printed Fish Tank Livewell parts

I designed and built a fish tank livewell for fishing. What these three different parts do are they attach onto the side of the tank. The lightweight plastics are extremely good for this, as it’s lightweight and doesn’t add a lot to the tank when moving it around, but allows for the higher well, aerating pump, and battery to be held there with constant pressure and not get splashed.
The employees at OPIM Innovate were extremely nice and helpful to help me slice my project and 3D print on the printer. I am currently at the process of 3D printing it which will help me assemble it to make the final project.
Submitted by: Liam Wilson

3D Printed Catapult ENGR1000 Project

In the OPIM Innovate lab, I was able to create a catapult for a project in my ENGR1000 class. OPIM Innovate has all of the resources necessary to prototype, print, and assemble a project such as this. The necessary Solidworks skills I used for this project can be learned through the Tech Tracks that the lab offers. The 3D printers available in the lab are also great to test out your prototype in the real world. While my first design for the project worked out on paper, I was able to make improvements to it by seeing the real physical thing after printing it out on the Prusa MK3. OPIM Innovate is a great space with a lot of tools along with very helpful and informative staff to help increase your knowledge.

Submitted by: Anthony Prior